

GFRA Scientific Meeting 2019

Session 6 - Virology

FMDV UNDERMINES THE HOST ANTIVIRAL RESPONSE BY CLEAVAGE OF KEY INNATE IMMUNE SENSORS

LESSONS LEAR NED FROM THE FOE

Viral interplay with the innate immune system

Proinflamatory Citokines

Pattern-Recognition Receptors (PRRs)

(Ma & Damania, Cell Host & Microbe 19, 2016)

RIG-I-like Receptors (RLRs) and FMDV

Recognition preferences

- RIG-I PAMP: 5'-ppp blunt short dsRNA
- MDA5 PAMP: long dsRNA (≥ 0.5-1 Kb)
- LGP2 PAMP: dsRNA any length, high affinity

(Repressor of RIG-I - and enhancer of MDA5- signaling, respectively)

Sensing of the FMDV genome

Type-I IFN induction during picornavirus/FMDV infections has been linked to MDA5

- Transfection of RIG-I^{-/-}, MDA5^{-/-}, or MAVS^{-/-} MEFs with RNA of equine rhinitis A aphthovirus (ERAV) induced an MDA5- and MAVS-dependent, but RIG-I-independent, IFN-β response (Feng et al 2012)
- IFN-β mRNA induction during **FMDV** infection was only reduced significantly in MDA5 silenced porcine PK-15 cells (Husser et al 2011)
- Overexpression of LGP2 can inhibit **FMDV** replication in PK-15 cells (Zhu et al 2017)

Nucleation process and filament assembly

1000000

Helicase

Recruitment of downstream signaling molecules

FMDV proteases are actively involved in immune evasion

By general mechanisms:

Cap-dependent translation shut-off Host transcription regulation DelSGylation Deubiquitination

... and specific mechanisms affecting crucial steps in antiviral response

Testing the effect of FMDV proteases on innate sensors and adaptor proteins

Expression of wt and catalytically inactive forms of FMDV Lpro and 3Cpro

- Co-transfection experiments with plasmids expressing different proteins relevant for antiviral immunity
 - Analysis of the effect of expression of those proteins on FMDV infection

FMDV and LGP2

Why LGP2?

- No information related to FMDV
- Apparently not a key target for viral antagonism
- Less studied among RLRs, "undersetimated"
- Strong inhibitory effect on FMDV infection

Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication

Zixiang Zhu¹, Chuntian Li¹, Xiaoli Du¹, Guoqing Wang¹, Weijun Cao¹, Fan Yang¹, Huanhuan Feng¹, Xiangle Zhang¹, Zhengwang Shi¹, Huanan Liu¹, Hong Tian¹, Dan Li¹, Keshan Zhang¹, Xiangtao Liu¹ and Haixue Zheng^{*,1}

FMDV proteases and LGP2

- LGP2 cleavage products associated with Lbpro catalytic activity
- N-terminal (~50 KDa) and C-terminal (~27 KDa) fragments
- Lbpro-dependent degradation of porcine LGP2 was also observed (C-term fragment not detected)

FMDV Lpro and LGP2

 LGP2 degradation by Lbpro is progressive and dose-dependent but independent of the caspase and proteasome pathways

FMDV Lpro interacts with LGP2

 Lbpro and porcine LGP2 coimmunoprecipitate and colocalize in cells

CBM

Severo Och

CSIC UAM

Same pattern observed in co-expression of LGP2 and Lbpro

LGP2 is cleaved during ERAV infection

• No LGP2 cleavage detected during infection with other picornaviruses and swine viruses

Lbpro subverts the antiviral response induced by LGP2

	Control cells	FMDV			
		-	DKK-poLGP2		
		-	EV	LbWT	LbC51A
Untreated samples	<15	<15	36.5	<15	41.7
Anti-IFN-α MAb	<15	<15	<15	<15	<15

Lbpro expression induced higher viral titers and lower IFN-6 and antiviral activity levels

Identifying the Lpro cleavage site on LGP2

- The RGRAR sequence in Motif VI resembles cleavage site on other protein targets
 - Mutation of that sequence generates an uncleavable LGP2

Is Lpro targeting other RLRs?

- No evidence of RIG-I cleavage fragments
- MDA5 is degraded in an Lb dose-dependent manner

The FMDV Leader protease is a powerful weapon for immune evasion

- Pleiotropic effect against host defenses
- Ensuring disruption of the RLR signaling pathway at the early steps of viral RNA recognition

Does Lpro know limits?

Work in progress

 Studies on the interplay of FMDV with effector and adaptor molecules of other PRRs (cGAS/STING, TLR....)

We are facing a reckless enemy but ...

Better knowledge of FMDV strategies for immune evasion will hopefully contribute to improvement of disease control

Acknowledgments

- Miguel Rodríguez Pulido
- Encarnación Martínez Salas
- Francisco Sobrino

- Mª Teresa Sánchez Aparicio
- Adolfo García Sastre

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

THANKS FOR YOUR ATTENTION

